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Reinforcement Learning Intro

* RL is a type of machine learning where an agent learns to make decisions by
taking actions 1n an environment to maximize some notion of cumulative reward.

@

!

State, s;

Action, a; Reward. 7
s I't



Safety in Reinforcement Learning

 Safety in RL 1s defined by the system's ability to attain the environmental objectives
while adhering to safety constraints.

RL in simulated world RL in physical world

Robotics Robotics



Safety Constraints

 Safety constraints are rules or limitations specific to an environment, designed to
prevent harmful outcomes by an RL agent, ensure ethical compliance, and

mitigate risks while maximizing environmental objectives.

* Overall goal of constrained RL: maximize expected return subject to the

environment specific safety constraints



Safety Constraints in Autonomous Driving

Maximize expected return

N subject to Safety constraints
Er [z V*Resi+1 ‘ J {
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- Adhere to speed limits
Maximize average velocity subject to - Obey traffic signs
while driving to destination - Maintain safe following distance
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Safety Constraints in Robotics

/

Maximize expected return
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Assist humans in a
collaborative environment
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- Maintain a safe distance from humans

- Adhere to power/velocity limits
- Operate within designated envelope
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Safety Constraints in Chatbots

4 .
Maximize expected return
- subject to Safety constraints
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— - Avoid discriminatory/biased/offensive
Generate responses subject to responses
to user prompts - Filter inappropriate text

\ Limit misinformation




Defining Safety Constraints

* These safety constraints are often defined in prior works using:

* Expert knowledge
* Computational methods from data

* Predefined safety constraint may not always be adequate in dynamic
and complex environments.
* Outdated expert knowledge/information
* The need for extensive historical data
* Therr static nature



Challenges of Static Saftety Constraints

 Static, predefined safety constraints lack flexibility in dynamic environments
where conditions and parameters are subject to frequent changes
* Consider the frozen-lake environment

» £ s § @ " £

Initial state Environment evolving through time  Further changes occurring...



Challenges of Static Saftety Constraints

e Uber Autonomous Vehicle Incident, 2018

Reports claim that the death of Elaine Herzberg
in March 2018 was caused by a self-driving
vehicle system that could not detect
"jaywalkers" and failed to classify Herzberg as
a pedestrian. the system design did not include
consideration for jaywalking pedestrians.

A frame from the Dash cam footage released by
Uber Inc.



Lack of Predefined Safety Constraints

* In some 1nstances, predefined safety constraints may not be
unavailable and impossible to acquire
 In environments that are uncharted and never before explored

 In environments that are too dangerous to explore repeatedly to have a good
1dea of the safety constraints

* In environments where the collection of extensive historical data poses
potential risks.



Problem Statement

* We consider the problem of safe RL policy synthesis in an environment
where safety constraints are unknown a priori

* Our ultimate objective is to concurrently:

1. Optimize parameters of a safety specification to closely mirror the true
environmental safety constraints

2. Solve a constrained optimization problem to obtain an optimal policy such that
the policy adheres to the learned STL safety constraint while maximizing returns



This Talk

* Our contributions:

1. A framework for concurrently learning safety constraints and RL control
policy

2. An adaptation of the TD3-Lagrangian RL algorithm to compute costs from
an STL specification

3. Proving the efficacy of our framework through evaluations in various safety
critical environments

e Outline

Results Summary
Background Case studies
Approach
D1scussmn Future Work




Signal Temporal Logic (STL)

* STL is a formal language used for specifying properties of signals over time.
 STL grammar 1s given by:

¢ = Tlu)<c| =¢p| d1 NP2 | d1 Uy, 1,192

True Predicate Not And Until

* From which additional logical and temporal operators were derived:
$1 N, ,0r Fi t,] ¢, Eventually
Gi,t,] @, Always b1 = ¢, , Implies

Example: ¢ = G[g31 (x <5)A (y > 3)



Qualitative Semantics

* Qualitative semantics (Boolean semantics) of STL indicate weather or not a signal
satisfies an STL formula (True/False)

* Quantitative semantics indicate how well a signal satisfies an STL formula through

a robustness degree
STL Quantitative semantics

Formula Robustness value
p(st,>) Pmax
p(st, phe) u(xe) —c
p(st, ~¢1) —p(st, $1)
p(st, o1 A\ ¢2) min(p(st, 1), p(st, $2))
p(st, 1V ¢2) max(p(st, ¢1),p(st, $2))
p(st, g1 = ¢2)  max(—p(st, P1),p(st, $2))
p(st, Flap) $1) MaXy c[t4-a,t+4b| p(sv, ¢1)
p(st, Giap#1) MiNy ¢ (4 4,045 P (St P1)

(

p(st, pild[gp)P2)  MaAXpc(tiapsb) (min{P(St'/%)z

mintue [t,t/] P(St”r (Pl ) })
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Parametric STL (pSTL)

* pSTL is an extension of STL where only the structure/template of the
STL formula 1s given, 1.e., the STL formula 1s parameterized

- The time-bounds [t1, t2] for temporal operators
- The constants p for inequality predicates are replaced by free parameters

Example: ¢ = Gz, e, (6 <) A (v > p2)



RL vs. Constrained RL

* The RL objective i1s to maximize * The constrained RL objective 1s to
cumulative discounted rewards within maximize reward while also
an episode satisfying environmental safety
constraints

max Yo Y Tt s k41
max J* (1)
S.t. ]C (T[g) <d

JR is the reward objective function, J¢ is the
constraint function, and d is the cost limit.




Bayesian Optimization

* BO 1s an optimization strategy for black-box functions that are intractable to
analyze

- Non-convex, non-linear, and/or computationally expensive to evaluate

* A technique to find the global optimum of an objective function by building a
probabilistic model of the objective function, known as the surrogate function.

* Expected Improvement (EI) acquisition function:

El(p) = E[max(0, finn(® — f(®) | p.D|

p is the parameter set, D represents the current observations, and f;,;;, 1s the minimum value
observed so far



Our Proposed Approach

* We propose a framework for concurrently learning safe RL policies and STL
safety constraint parameters in an environment where safety constraints are not
defined a priori

* Begins with:

1. A small set of labeled data, D and D,
2. A pSTL specification, ¢,

* We frame this concurrent learning problem as a bi-level optimization,
- upper-level === pSTL parameter synthesis
- lower-level ====== constrained RL policy optimization
- assistance of a human expert
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Bi-level Optimization

* An optimization approach that contains two levels of optimization tasks where
one optimization task, the lower level, 1s nested within the other, the upper level.

- ™ arg min f ((:bv(p)' T (va(p))) :
gpper-level sit. 1 (Pupy) € arg max J® (mo($v(p)))
optimization TgEMc
f 1s the upper-level objective function with optimization
\é\( LoYve}‘-le‘.fel l_</ variable p and 7 is the lower-level optimization objective
optimization with optimization variable 6.




STL Parameter Learning

* Upper-level optimization

» A Bayesian optimization process designed to obtain the optimal parameters p™* of a
given pSTL formula ¢, using the labeled safe and unsafe datasets Dg and D¢

* The final STL ¢,(,+) best classifies between Dg and Dy such that:
* Traces labeled “safe” by the human expert, X; mmm—— p(qbv(p*),xs) > (
* Traces labeled “unsafe” by the human expert, X, ——, p(gbv(p*),xus) <0



STL Parameter Learning

* Objective function:

- N
1 No(dowy) 10 " p(Guip) 17us
f (¢v ) = =( + )
(p) 2 N N
Xs Xus
False Negative False Positive
Rate Rate

X and x,, are safe and unsafe trajectories, respectively, sampled from their
respective datasets

* “Balanced” misclassification rate (MCR)
* Goal: minimize f,
* Output: ¢y p«)= "Pcost



Policy Learning: twin delayed deep deterministic
policy gradient (TD3)

- A class of actor-critic RL algorithms that 1s designed to address the overestimation
bias in the deep deterministic policy gradient (DDPG) algorithm

-How? e -
- Clipped double-Q learning g
- Delayed policy update

- Target policy smoothing

Environment

(t||ggoat, @ty ge+1]|ggoal, 7t)

Replay Buffer | Global memory HER

Image credit: Google search
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Policy Learning- TD3 Structure

* Lagrange multiplier method

- Transforms a constrained optimization problem into an equivalent
unconstrained optimization problem through Lagrangian relaxation procedure
that introduces Lagrange coefficient A

max JR (mg) s.t. J¢ (mp) <d

max min L(6,2) =J*(mg) = A (J* (mg) —d )

Goal: Find optimal values 6™ and A”
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Policy Learning- TD3 Structure

* TD3-Lagrangian:
L =—-QV(mg ,s)+1-Q¢ (my ,5)

Q" is the minimum value of the two reward critic network outputs, Q¢ is the
value of cost critic network, and = 1s the policy network.

* Lagrange coefficient update rule
A =2 +n(J(mg) —d)
n is the when /¢ exceeds the constraint threshold d, A is increased to prioritize
cost minimization



Logically-Constrained TD3

* Cost assignment

- We propose a novel modification to the TD3-Lagrangian architecture
redefining the cost function /ogically, using the learned STL specification ¢, ¢

- Cost at each step:
. 1, ifp(¢cost) <0
C (s ae) = {0, if p(Pcost) = 0

— p(dost) <0 = s; does not satisfy @ ¢t
- p(¢cost) > 0 =—=) s; satisties Pgogt
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Human Feedback Mechanism

* A human expert iteratively provides labels to the rollout =

X —_—

traces generated through the execution of " A
* Why?
* Because acquiring an extensive, diverse labeled dataset 1s often impractical

* Our strategy focuses on attaining sufficiently accurate pSTL
parameters with the minimal necessary amount of data
- [teratively expanding the “small” 1nitial dataset of labeled data at each loop
- Refining the parameter assignment for the pSTL using the updated dataset




Human Feedback Mechanism

* Automation of human labeling for the purpose of experimentation:

- Computing the robustness value of each trace within the rollout set with
respect to the True STL safety constraint Y

- The use of Y 1s only for automation purposes, and in real-world applications
the actual safety constraint remains unknown to the algorithm

[ ' “Satisfies / models” = p(,x) = 0

_|Lifx=y

L) = {0, if x ¥
1L

'“Does not satisfy” = p(y,x) < 0

- Traces labeled safe are append to D¢, Traces labeled unsafe are append to D



Our Proposed Framework

Extract final
a>0o )
— STL constraint
¢, ) and policy 7*

Conppare |l a<cs Update Dy, _Du s | Dg, Dy BO for pSTL p* Refine
withthe ——» byappending ——» parameter ——» STL
threshold & de. iz refinement constraint

]

Compute Human expert R Lagrglan ?
safe trace labeling —> ot >
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Under review for the IEEE Journal Control Systems



Case Study 1: Safe Navigation- Circle

* (Goal: agent needs to move 1n a circular motion
within the circle area (green), while also attempting ¢

to stay at the outermost circumference of the circle
1 —uy + vx

&

T‘t —
Ta — T¢ Ta

* Constraint: avoid going outside safety boundaries
that intersect with the circle (yellow)

e Unknown Constraint : The x

¢p =Gl o (xa < xT_) \/(xa < xT+) coordinates of the boundaries

» 2 safety parameters to learn



Case Study 2 : Safe Navigation- Goal

* Goal: agent needs to navigate towards a designated goal

location (green) starting from a random 1nitial state. New goal mo g
randomly assigned upon reaching the goal e X
re = (di—1—d¢) - B

* Constraint: avoid collision with the hazard areas (blue)

8
o0 =6 ~(V/ Jls0 =500+ 00 =) <)
=1

Unknown Constraint : The x-y
coordinates of the hazards-
* 16 safety parameters to learn



Case Study 3: Half Cheetah

* Goal: agent needs to apply torque on the joints to
make the cheetah run in the forward direction to
achieve maximum speed

Xt—1 —

X¢ 5
r= vy =) — (we B(ad)

* Constraint: stay below the maximum allowable x-

velocity, Uy, gy  Unknown Constraint : the x-
velocity threshold

e ] safety parameter to learn
¢p — G(_'(ua > Umayx) ) yP
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Evaluation

* We evaluate key performance metrics of two primary tasks:
1. Safe policy optimization
2. pSTL parameter synthesis

* Compare results with two baselines:

1. Baseline 1: unconstrained RL policy optimization 1n an environment 1n
which safety constraints are unknown

2. Baseline 2: constrained RL policy optimization in an environment with
known STL safety constraint



Results and Discussion

A trade-off between rewards and
costs (not trivially safe)

Baseline 1 achieves the highest
reward, yet 1t concurrently incurs
the highest cost

Our algorithm exhibits a reduction
in rewards compared to baseline 1;
however, 1t succeeds 1n reducing
costs substantially across all case
studies

The performance of our algorithm
closely mirrors that of baseline 2

Rewards
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Results and Discussion

Metrics from the conclusion of training averaged over 3 random seeds

Baseline 1 Baseline 2 Ours

7 R 7(‘ 7 R 7(‘ 7 R 7(‘

Safe Navigation

: 111.3 3903 5490 141 57.02 8.39
Circle

Safe Navigation
Goal

Safe Velocity
Half Cheetah

282 488 115 49 165 243

10371.1957.6 2676.1 1.67 2114.7 0.62

* Qualitative counterpart to the learning curves presented previously
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Results and Discussion

* The policy optimized under baseline 1
fails to produce safe trajectories in case &= Baseline 1 @m Baseline 2 & Ours
studies 2 and 3, with only a few safe
trajectories in case study 2

—
=)
o

co
o

* In contrast, the policy optimized through
our framework yields a number of safe
trajectories comparable to baseline 2,
which had complete knowledge of the
safety constraints from the start

o))
o

N}
o

Percentage of safe traces
S
o

éafe Navigation Safe Navigation Safe Velocity
Circle Goal Half Cheetah

0
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Results and Discussion

MCR

Baseline 2  Ours

Safe Navigation

Circle 0.0 0.0251
Safe Navigation ,.
Godl 0.0 0.0534
Safe Velocity 0.0 0.0

Half Cheetah

* We assessed the STL's quality by its ability to accurately classify labeled data,
and then benchmarked these results against the performance of the True STL
used 1n baseline 2

* The true STL safety specification (as expected) classifies all traces with an MCR
of zero

* The STL derived through our algorithm closely parallels this standard



Limitations

* Reliance on pre-existing datasets of safe and unsafe trajectories,
however small, as well as an STL safety specification template

* The requirement for human expert manual labeling of trajectories
* No guarantees of a safe policy



RL + Foundation Models

Foundation Models
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Image credit: Foundation Models for Decision Making Website
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LLMs-augmented Contextual Bandit
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