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Reinforcement Learning Intro
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Reinforcement Learning Intro

• RL is a type of machine learning where an agent learns to make decisions by 
taking actions in an environment to maximize some notion of cumulative reward.
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State, 𝑠!
Reward, 𝑟!

Action, 𝑎!



Safety in Reinforcement Learning 

• Safety in RL is defined by the system's ability to attain the environmental objectives 
while adhering to safety constraints.
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RL in simulated world RL in physical world

Autonomous driving Chatbot

Robotics

Games Protein folding

Robotics



Safety Constraints
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• Safety constraints are rules or limitations specific to an environment, designed to 

prevent harmful outcomes by an RL agent, ensure ethical compliance, and 

mitigate risks while maximizing environmental objectives.

• Overall goal of constrained RL: maximize expected return subject to the 

environment specific safety constraints



Safety Constraints in Autonomous Driving
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- Adhere to speed limits
- Obey traffic signs
- Maintain safe following distance

Safety constraints
Maximize expected return

subject to𝔼" 	&
#$%

&

𝛾#𝑅!'#'(	

subject toMaximize average velocity 
while driving to destination



Safety Constraints in Robotics
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Safety constraintssubject to

subject to
- Maintain a safe distance from humans
- Adhere to power/velocity limits
- Operate within designated envelope

Assist humans in a 
collaborative environment

Maximize expected return

𝔼" 	&
#$%

&

𝛾#𝑅!'#'(	



Safety Constraints in Chatbots

8

Safety constraints
Maximize expected return

subject to
𝔼" 	&

#$%

&

𝛾#𝑅!'#'(	

subject to
- Avoid discriminatory/biased/offensive 
responses
- Filter inappropriate text
- Limit misinformation

Generate responses 
to user prompts



Defining Safety Constraints

• These safety constraints are often defined in prior works using:
• Expert knowledge
• Computational methods from data

• Predefined safety constraint may not always be adequate in dynamic 
and complex environments.
• Outdated expert knowledge/information
• The need for extensive historical data 
• Their static nature
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Challenges of Static Safety Constraints
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• Static, predefined safety constraints lack flexibility in dynamic environments 
where conditions and parameters are subject to frequent changes

• Consider the frozen-lake environment

Initial state Environment evolving through time Further changes occurring…



Challenges of Static Safety Constraints
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• Uber Autonomous Vehicle Incident, 2018 

Reports claim that the death of Elaine Herzberg 
in March 2018 was caused by a self-driving 
vehicle system that could not detect 
"jaywalkers" and failed to classify Herzberg as 
a pedestrian. the system design did not include 
consideration for jaywalking pedestrians.

A frame from the Dash cam footage released by 
Uber Inc.



Lack of Predefined Safety Constraints

• In some instances, predefined safety constraints may not be 
unavailable and impossible to acquire
• In environments that are uncharted and never before explored
• In environments that are too dangerous to explore repeatedly to have a good 

idea of the safety constraints
• In environments where the collection of extensive historical data poses 

potential risks.
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Problem Statement

• We consider the problem of safe RL policy synthesis in an environment 
where safety constraints are unknown a priori
• Our ultimate objective is to concurrently:

1. Optimize parameters of a safety specification to closely mirror the true 
environmental safety constraints

2. Solve a constrained optimization problem to obtain an optimal policy such that 
the policy adheres to the learned STL safety constraint while maximizing returns
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This Talk

• Our contributions:
1. A framework for concurrently learning safety constraints and RL control 

policy
2. An adaptation of the TD3-Lagrangian RL algorithm to compute costs from 

an STL specification
3. Proving the efficacy of our framework through evaluations in various safety 

critical environments
• Outline
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Signal Temporal Logic (STL)

• STL is a formal language used for specifying properties of signals over time.
• STL grammar is given by: 

• From which additional logical and temporal operators were derived:
      𝜙)⋀𝜙* , Or              𝑭 !!,!" 	𝜙	,	Eventually
𝑮 !!,!" 	𝜙	, Always  𝜙#	 ⇒ 𝜙$ , Implies

Example: 𝝓 = 𝐺 +,- 𝑥 < 5 ⋀ 	(𝑦 > 3)
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𝜙	 ≔ 	 ⊤ | 𝜇 𝑥 < 𝑐 | ¬𝜙 |  𝜙)⋀𝜙* | 𝜙)	𝑈 .!,." 𝜙* 
True Predicate Not And Until



Qualitative Semantics 

• Qualitative semantics (Boolean semantics) of STL indicate weather or not a signal 
satisfies an STL formula (True/False) 
• Quantitative semantics indicate how well a signal satisfies an STL formula through 

a robustness degree
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STL Quantitative semantics



Parametric STL (pSTL)

• pSTL is an extension of STL where only the structure/template of the 
STL formula is given, i.e., the STL formula is parameterized 

- The time-bounds [𝑡1, 𝑡2]	for temporal operators 
- The constants µ for inequality predicates are replaced by free parameters
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Example: 𝝓 = 𝐺 %!,%" 𝑥 < 𝜇# ⋀ 	(𝑦 > 𝜇$)



RL vs. Constrained RL

• The RL objective is to maximize 
cumulative discounted rewards within 
an episode	

 max	∑!"#$ 𝛾!𝑟%&!&'
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• The constrained RL objective is to 
maximize reward while also 
satisfying environmental safety 
constraints

-5

+100

-5

max 𝐽& 	(𝜋')
𝑠. 𝑡. 	 𝐽( 𝜋' ≤ 𝑑

+10

-5

-5
-50

𝐽* is the reward objective function, 𝐽+ 	is the 
constraint function, and d is the cost limit.



Bayesian Optimization

• BO is an optimization strategy for black-box functions that are intractable to 
analyze

- Non-convex, non-linear, and/or computationally expensive to evaluate
• A technique to find the global optimum of an objective function by building a 

probabilistic model of the objective function, known as the surrogate function.
• Expected Improvement (EI) acquisition function:

𝑝 is the parameter set, 𝐷 represents the current observations, and 𝑓!"#	is the minimum value 
observed so far
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𝐸𝐼 𝑝 = 	𝔼 max 0, 𝑓!"# 𝑝 	− 𝑓 𝑝 	|	𝑝, 𝐷



Our Proposed Approach

• We propose a framework for concurrently learning safe RL policies and STL 
safety constraint parameters in an environment where safety constraints are not 
defined a priori
• Begins with:

1. A small set of labeled data, 𝐷0 and 𝐷10 
2. A pSTL specification, 𝜙2

• We frame this concurrent learning problem as a bi-level optimization,
- upper-level        pSTL parameter synthesis
- lower-level                constrained RL policy optimization 
- assistance of a human expert
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Bi-level Optimization

•  An optimization approach that contains two levels of optimization tasks where 
one optimization task, the lower level, is nested within the other, the upper level.
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Lower-level 
optimization <<

<

>

<
<<

<

<

Upper-level 
optimization

argmin
,
𝑓 𝜙- , , 	𝜋∗ 𝜙- , ,

𝑠. 𝑡. 	 𝜋∗ 𝜙- , 	 ∈ arg max
"!∈""

	 𝐽* 	(𝜋0(𝜙-(,)))

𝑓 is the upper-level objective function with optimization 
variable 𝑝 and π is the lower-level optimization objective 
with optimization variable 𝜃.



STL Parameter Learning

• Upper-level optimization
• A Bayesian optimization process designed to obtain the optimal parameters 𝑝∗ of a 

given pSTL formula 𝜙2 using the labeled safe and unsafe datasets 𝐷0 and 𝐷10
• The final STL 𝜙E 2∗ 	best classifies between 𝐷0 and 𝐷10	such that: 
• Traces labeled “safe” by the human expert, 𝑥0                𝜌 𝜙E 2∗ , 𝑥0 > 0
• Traces labeled “unsafe” by the human expert, 𝑥10   𝜌 𝜙E 2∗ , 𝑥10 < 0
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STL Parameter Learning
• Objective function:	

𝑓 𝜙7(9) =
1
2
(
𝑁; <# $

%
|=&

𝑁=&
+
𝑁; <# $

'
|=(&

𝑁=(&
)

𝑥0 and 𝑥10 are safe and unsafe trajectories, respectively, sampled from their 
respective datasets

• “Balanced” misclassification rate (MCR)
• Goal: minimize 𝑓, 
• Output: 𝜙E 2∗ ≅	"𝜙FG0."
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False Negative
 Rate

False Positive
 Rate



Policy Learning: twin delayed deep deterministic 
policy gradient (TD3)

- A class of actor-critic RL algorithms that is designed to address the overestimation 
bias in the deep deterministic policy gradient (DDPG) algorithm

- How?
- Clipped double-Q learning
- Delayed policy update
- Target policy smoothing

24
Image credit: Google search



Policy Learning- TD3 Structure

• Lagrange multiplier method
- Transforms a constrained optimization problem into an equivalent 
unconstrained optimization problem through Lagrangian relaxation procedure 
that introduces Lagrange coefficient λ

Goal: Find optimal values θ∗ and 𝜆∗
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max
H
min
I J+ ℒ(θ, λ)	=	𝐽

K(𝜋H)	− λ (	𝐽K(𝜋H)	−𝑑	)	

max
L$	M	L%

𝐽K	(𝜋H) 	 𝒔. 𝒕. 	 𝐽N 𝜋H ≤ 𝑑



Policy Learning- TD3 Structure

• TD3-Lagrangian:
𝐿	 = 	−𝑄? 𝜋' 	 , 𝑠 + 𝜆 ⋅ 𝑄( 𝜋' 	 , 𝑠

𝑄O	is the minimum value of the two reward critic network outputs, 𝑄N is the 
value of cost critic network, and π is the policy network.

• Lagrange coefficient update rule
𝜆@ = 𝜆 + 𝜂(	𝐽((𝜋') − 𝑑)

𝜂	is the when 𝐽N exceeds the constraint threshold 𝑑, 𝜆 is increased to prioritize 
cost minimization
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Logically-Constrained TD3

• Cost assignment
- We propose a novel modification to the TD3-Lagrangian architecture 
redefining the cost function logically, using the learned STL specification 𝜙FG0.
- Cost at each step: 

𝑐 𝑠., 𝑎. =	_1,	 if	ρ 𝜙FG0. < 0
0,	 if	ρ 𝜙FG0. ≥ 0

−	ρ 𝜙FG0. < 0  𝑠. does not satisfy 𝜙FG0.
−	ρ 𝜙FG0. ≥ 0           𝑠. satisfies 𝜙FG0.
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Human Feedback Mechanism

•  A human expert iteratively provides labels to the rollout 
   traces generated through the execution of 𝜋∗

• Why?
• Because acquiring an extensive, diverse labeled dataset is often impractical

• Our strategy focuses on attaining sufficiently accurate pSTL 
parameters with the minimal necessary amount of data

- Iteratively expanding the “small” initial dataset of labeled data at each loop
- Refining the parameter assignment for the pSTL using the updated dataset
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Human Feedback Mechanism

• Automation of human labeling for the purpose of experimentation: 
- Computing the robustness value of each trace within the rollout set with 
respect to the True STL safety constraint 𝝍
- The use of 𝜓 is only for automation purposes, and in real-world applications 
the actual safety constraint remains unknown to the algorithm

- Traces labeled safe are append to 𝐷0,Traces labeled unsafe are append to 𝐷10

29

“Satisfies / models” ≡ 𝜌 𝜓, 𝑥 ≥ 0

“Does not satisfy” ≡ 𝜌 𝜓, 𝑥 < 	0

𝐿(𝑥) 	= 	 _
1, 𝑖𝑓	𝑥	⊨	𝜓
0, 𝑖𝑓	𝑥	⊭	𝜓



Our Proposed Framework
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Under review for the IEEE Journal Control Systems



Case Study 1: Safe Navigation- Circle

• Goal: agent needs to move in a circular motion 
within the circle area (green), while also attempting 
to stay at the outermost circumference of the circle

𝑟! =
1

𝑟" − 𝑟#
⋅
−𝑢𝑦 + 𝑣𝑥

𝑟"
	

• Constraint: avoid going outside safety boundaries 
that intersect with the circle (yellow)

𝜙$ = 𝐺 ¬ 𝑥" < 𝑥%! 	 0 𝑥" < 𝑥%"
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• Unknown Constraint : The x 
coordinates of the boundaries 

• 2 safety parameters to learn



Case Study 2 : Safe Navigation- Goal
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• Goal: agent needs to navigate towards a designated goal 
location (green) starting from a random initial state. New goal 
randomly assigned upon reaching the goal

𝑟! = (𝑑!&'−𝑑!) ⋅ 𝛽

• Constraint: avoid collision with the hazard areas (blue) 

𝜙$ = 𝐺 ¬ 0
()'	

+

𝑥" 	− 𝑥,,( ,
. + 𝑦" 	− 𝑦,,( ,

. < 𝑟, • Unknown Constraint : The x-y 
coordinates of the hazards-

• 16 safety parameters to learn



Case Study 3: Half Cheetah
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• Goal: agent needs to apply torque on the joints to 
make the cheetah run in the forward direction to 
achieve maximum speed 

𝑟 = (𝑤# ⋅
𝑥$%& − 𝑥$

𝑑$
) − (𝑤' ⋅ ∑(𝑎$())

• Constraint: stay below the maximum allowable x-
velocity, 𝑢PQR

𝜙) = 𝐺 ¬(𝑢* > 𝑢+*,)	

• Unknown Constraint : the x-
velocity threshold

• 1 safety parameter to learn



Evaluation

• We evaluate key performance metrics of two primary tasks:
1. Safe policy optimization
2. pSTL parameter synthesis

• Compare results with two baselines: 
1. Baseline 1: unconstrained RL policy optimization in an environment in 

which safety constraints are unknown
2. Baseline 2: constrained RL policy optimization in an environment with 

known STL safety constraint
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Results and Discussion
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a. Safe Navigation - Circle

b. Safe Navigation - Goal

c. Safe Velocity – Half Cheetah

• A trade-off between rewards and 
costs (not trivially safe)
• Baseline 1 achieves the highest 

reward, yet it concurrently incurs 
the highest cost
• Our algorithm exhibits a reduction 

in rewards compared to baseline 1; 
however, it succeeds in reducing 
costs substantially across all case 
studies
• The performance of our algorithm 

closely mirrors that of baseline 2



Results and Discussion
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Metrics from the conclusion of training averaged over 3 random seeds

• Qualitative counterpart to the learning curves presented previously



Results and Discussion

• The policy optimized under baseline 1 
fails to produce safe trajectories in case 
studies 2 and 3, with only a few safe 
trajectories in case study 2
• In contrast, the policy optimized through 

our framework yields a number of safe 
trajectories comparable to baseline 2, 
which had complete knowledge of the 
safety constraints from the start
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Results and Discussion
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• We assessed the STL's quality by its ability to accurately classify labeled data, 
and then benchmarked these results against the performance of the True STL 
used in baseline 2
• The true STL safety specification (as expected) classifies all traces with an MCR 

of zero
• The STL derived through our algorithm closely parallels this standard



Limitations

• Reliance on pre-existing datasets of safe and unsafe trajectories, 
however small, as well as an STL safety specification template
• The requirement for human expert manual labeling of trajectories
• No guarantees of a safe policy
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RL + Foundation Models

Image credit: Foundation Models for Decision Making Website



41Foundation Models for Decision Making Workshop at NeurIPS 2023



Thank you!
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